Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000			

Are Most Research Findings False?

Victor Gay

Toulouse School of Economics and IAST

Dinner Innovation December 2018

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
- **3** The Need for Replications
- 4 Discussion

Basic Principles ●○○	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Plan				

1 Basic Principles of Inference

- Statistical Significance
- Statistical Power
- Prior Beliefs
- 2 Are Most Studies False?
- **3** The Need for Replications

4 Discussion

Basic Principles ●○○	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O

- To test hypothesis H_1 , suppose null hypothesis H_0 is true.
- E.g. H_0 : $\overline{X} = 0$, H_1 : $\overline{X} \neq 0$, where X is a random variable.
- Show data improbable under the null and reject H_0 .

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000			

• p-value:

- Result is **statistically significant** if unprobable under *H*₀.
- Probability of result equal or more extreme than observed under H_0 .

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000			

• p-value:

- Result is **statistically significant** if unprobable under *H*₀.
- Probability of result equal or more extreme than observed under H_0 .
- Significance level α :
 - Threshold such that reject H_0 if $p \leq \alpha$.
 - Type I error (false positive): $\alpha = \Pr(p \le \alpha | H_0)$.
 - Usually, $\alpha = 0.05$.

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000			

Significance level: $\alpha = 0.05$.

Basic Principles ○●○	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Plan				

1 Basic Principles of Inference

- Statistical Significance
- Statistical Power
- Prior Beliefs
- 2 Are Most Studies False?
- **3** The Need for Replications

④ Discussion

Basic Principles ○●○	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Statistical	Power			

- Type II error (false negative): $\beta = \Pr(\text{fail reject } H_0 | H_0 \text{ false}).$
- Statistical power of a test: probability of rejecting H_0 when H_0 false.
 - \implies Statistical power: 1β .

Basic Principles ○●○	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Statistical	Power			

- Type II error (false negative): $\beta = \Pr(\text{fail reject } H_0 | H_0 \text{ false}).$
- Statistical power of a test: probability of rejecting H_0 when H_0 false.

 \implies Statistical power: $1 - \beta$.

- Factors affecting power of a test:
 - Effect size $\uparrow \Longrightarrow$ power \uparrow .
 - Sample size $\uparrow \Longrightarrow$ power \uparrow .

Basic Principles ○●○	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Statistical	Power			

- Type II error (false negative): $\beta = \Pr(\text{fail reject } H_0 | H_0 \text{ false}).$
- Statistical power of a test: probability of rejecting H_0 when H_0 false.

 \implies Statistical power: $1 - \beta$.

- Factors affecting power of a test:
 - Effect size $\uparrow \Longrightarrow$ power \uparrow .
 - Sample size $\uparrow \Longrightarrow$ power \uparrow .
- Rule of thumbs:
 - $1 \beta = 0.80$.
 - Type I error 4-times as serious as type II error.

Basic Principles ○●○	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Error Typ	es			

	Null hypothesis H_0		
	True False		
Reject H_0	Type I error false positive α	$\begin{array}{c} {\sf Correct} \\ {\it true \ positive \ 1-\beta} \end{array}$	
Fail to reject H_0	Correct true negative $1-lpha$	Type II error false negative β	

Basic Principles ○○●	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
 - Statistical Significance
 - Statistical Power
 - Prior Beliefs
- 2 Are Most Studies False?
- **3** The Need for Replications
- ④ Discussion

Basic Principles ○○●	Are Most Studies False?	The Need for Replications	Discussion O	Appendix O
Prior Belie	efs			

- Prior probability that the relationship is true i.e. H_0 should be rejected: π .
- Depends on:
 - Field
 - Scientific relationship
 - Prior research

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
 - Post-Study Probability
 - What Can We Learn From One Study?
 - What Can We Learn From Many Studies?
 - Aggravating Problems
- **3** The Need for Replications

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O
Post-Stud	v Probability			

J

J

- Mechanics of statistical inference \implies many findings are false.
- Reliance on p-values \implies excessive number of **false positives**.

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O

- Notations:
 - n: number of scientific associations to be investigated.
 - π : fraction of true associations (or prior).
 - 1β : power of test.
 - α : statistical significance, or false positive probability.

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O

- Notations:
 - *n*: number of scientific associations to be investigated.
 - π : fraction of true associations (or prior).
 - 1β : power of test.
 - α : statistical significance, or false positive probability.
- Quantities of interest:
 - True associations: $\pi \cdot n$
 - False associations: $(1 \pi) \cdot n$

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O

- Notations:
 - n: number of scientific associations to be investigated.
 - π : fraction of true associations (or prior).
 - 1β : power of test.
 - α : statistical significance, or false positive probability.
- Quantities of interest:
 - True associations: $\pi \cdot n$
 - False associations: $(1 \pi) \cdot n$
 - True associations declared true: $(1 \beta) \cdot \pi \cdot n$

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O

- Notations:
 - n: number of scientific associations to be investigated.
 - π : fraction of true associations (or prior).
 - 1β : power of test.
 - α : statistical significance, or false positive probability.
- Quantities of interest:
 - True associations: $\pi \cdot n$
 - False associations: $(1 \pi) \cdot n$
 - True associations declared true: $(1 \beta) \cdot \pi \cdot n$
 - False associations declared true: $lpha \cdot (1-\pi) \cdot n$

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O
Post-Stud	v Prohability			

J

• Post-study probability (PSP):

J

- PSP: probability that an association declared true is actually true.
- $PSP = Pr(H_0 \text{ false} | reject H_0).$

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O
Post-Stud	ly Probability			

- Post-study probability (PSP):
 - PSP: probability that an association declared true is actually true.
 - $PSP = Pr(H_0 \text{ false} | reject H_0).$
- Using Baysian updating (Bayes rule).

 $\label{eq:PSP} \text{PSP} = \frac{\text{number of true associations declared true}}{\text{number of associations declared true}}$

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O
Post-Stud	y Probability			

- Post-study probability (PSP):
 - PSP: probability that an association declared true is actually true.
 - $PSP = Pr(H_0 \text{ false} | reject H_0).$
- Using Baysian updating (Bayes rule).

 $\label{eq:PSP} \text{PSP} = \frac{\text{number of true associations declared true}}{\text{number of associations declared true}}$

$$PSP = \frac{(1-\beta) \pi}{\underbrace{(1-\beta) \pi}_{\text{true positives}} + \underbrace{\alpha (1-\pi)}_{\text{false positives}}}$$

Basic Principles	Are Most Studies False? ●○○○	The Need for Replications	Discussion O	Appendix O
Post-Stu	dy Probability			

PSP: probability that an association declared true is actually true.

Post-Study Probability =
$$\frac{(1-\beta) \pi}{\underbrace{(1-\beta) \pi}_{\text{true positives}} + \underbrace{\alpha (1-\pi)}_{\text{false positives}}}$$

Comparative statics:

- Prior $\pi \uparrow \Longrightarrow$ PSP \uparrow .
- Statistical significance $\alpha \downarrow \Longrightarrow \mathsf{PSP} \uparrow$.
- Power $1 \beta \uparrow \Longrightarrow$ PSP \uparrow .

Basic Principles	Are Most Studies False? ○●○○	The Need for Replications	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
 - Post-Study Probability
 - What Can We Learn From One Study?
 - What Can We Learn From Many Studies?
 - Aggravating Problems
- **3** The Need for Replications

Basic Principles	Are Most Studies False? ○●○○	The Need for Replications	Discussion O	Appendix O

What Can We Learn From One Study?

Basic Principles	Are Most Studies False? ○●○○	The Need for Replications	Discussion O	Appendix O

What Can We Learn From One Study?

Statistical significance $\alpha \downarrow \Longrightarrow \mathsf{PSP} \uparrow$

Basic Principles	Are Most Studies F ○●○○	alse? The Need for Replication	ns Discussion O	Appendix O

What Can We Learn From One Study?

Statistical power $1 - \beta \uparrow \Longrightarrow \mathsf{PSP} \uparrow$

Basic Principles	Are Most Studies False? ○○●○	The Need for Replications	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
 - Post-Study Probability
 - What Can We Learn From One Study?
 - What Can We Learn From Many Studies?
 - Aggravating Problems
- **3** The Need for Replications

- Usually number of researchers simultaneously working k > 1.
- Two implications:
 - Number of true positives ↑.
 - Number of false positives \uparrow .
- But false positives ↑ faster than true positives. Formula

- Usually number of researchers simultaneously working k > 1.
- Two implications:
 - Number of true positives ↑.
 - Number of false positives \uparrow .
- \implies Post-study probability \downarrow when number of researchers \uparrow

Basic Principles	Are Most Studies False? ○○●○	The Need for Replications	Discussion O	Appendix O

k = 1 researcher

Basic Principles	Are Most Studies False? ○○●○	The Need for Replications	Discussion O	Appendix O

k = 10 researchers

Basic Principles	Are Most Studies False? ○○●○	The Need for Replications	Discussion O	Appendix O

k = 50 researchers

Basic Principles	Are Most Studies False? ○○○●	The Need for Replications	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
 - Post-Study Probability
 - What Can We Learn From One Study?
 - What Can We Learn From Many Studies?
 - Aggravating Problems
- **3** The Need for Replications

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000			

Aggravating Problems

- Problems increasing the probability of false positives:
 - p-hacking.
 - Multiple testing.
 - Publication bias.
- Other problems:
 - Generalizability of lab behavior.
 - Scaling-up problem (population heterogeneity, compliance...).

Basic Principles	Are Most Studies False?	The Need for Replications ●○○	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
- **3** The Need for Replications
 - What is a Replication?
 - Benefits of Replications
 - Incentives for Replications
- ④ Discussion

Basic Principles	Are Most Studies False?	The Need for Replications ●○○	Discussion O	Appendix O

What is a Replication?

- Replication tests:
 - Verification tests:
 - Original data, same sample, identical method.
 - Solves measurement errors, coding errors, data construction errors.

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000	0	0

What is a Replication?

- Replication tests:
 - Verification tests:
 - Original data, same sample, identical method.
 - Solves measurement errors, coding errors, data construction errors.
 - Reproduction tests:
 - Resampling same population, identical method.
 - Solves sampling errors, low power.

Basic Principles	Are Most Studies False?	The Need for Replications ●○○	Discussion O	Appendix O

What is a Replication?

- Replication tests:
 - Verification tests:
 - Original data, same sample, identical method.
 - Solves measurement errors, coding errors, data construction errors.
 - Reproduction tests:
 - Resampling same population, identical method.
 - Solves sampling errors, low power.
- Robustness tests:
 - Reanalysis: same population, different method.
 - Extension: resampling, different method.

Basic Principles	Are Most Studies False?	The Need for Replications ○●○	Discussion O	Appendix O
Plan				

- **1** Basic Principles of Inference
- 2 Are Most Studies False?
- **3** The Need for Replications
 - What is a Replication?
 - Benefits of Replications
 - Incentives for Replications
- ④ Discussion

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000		

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000		

Starting prior: $\pi = 1\%$.

Basic Principles	Are Most Studies False?	The Need for Replications ○●○	Discussion	Appendix O
			-	-

Starting prior: $\pi = 1\%$. \downarrow statistical significance $\alpha \Longrightarrow \uparrow \mathsf{PSP}$

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000		

Starting prior: $\pi = 1\%$.

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000		

Starting prior: $\pi = 1\%$. \uparrow researchers $k \Longrightarrow \downarrow \mathsf{PSP}$

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000		

Starting prior: $\pi = 1\%$. \uparrow researchers $k \Longrightarrow \downarrow \mathsf{PSP}$

Basic Principles	Are Most Studies False?	The Need for Replications ○○●	Discussion O	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
- **3** The Need for Replications
 - What is a Replication?
 - Benefits of Replications
 - Incentives for Replications

Basic Principles	Are Most Studies False?	The Need for Replications ○○●	Discussion O	Appendix O

Incentives for Replications

- Very weak incentives for replications, except in specific fields.
 - Publication bias.
 - Career concerns...

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000		

Incentives for Replications

- Very weak incentives for replications, except in specific fields.
 - Publication bias.
 - Career concerns...
- Solutions?
 - Dedicated journals
 - Financial incentives
 - Co-authorship

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion •	Appendix O
Plan				

- 1 Basic Principles of Inference
- 2 Are Most Studies False?
- **3** The Need for Replications
- ④ Discussion

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion	Appendix
000	0000	000	•	

Practitioners' Perspective

- Interpretation of new findings?
- Investment following findings?
- Incentives for replication?

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion O	Appendix •
References	5			

- Benjamin et al. 2017. "Redefine Statistical Significance." *Nature Human Behavior*
- Ioannidis. 2005. "Why Most Published Research Findings Are False." PLoS Medicine 2(8):1418–22.
- Maniadis, Tufano, and List. 2014. "One Swallow Doesn't Make a Summer: New Evidence on Anchoring Effects." American Economic Review 104(1):277–90.
- Moonesinghe, Khoury, and Janssen. 2007 "Most Published Research Findings are False, But a Little Replication Goes a Long Way." *PLoS Medicine* 4(2): 218–21.

Basic Principles	Are Most Studies False?	The Need for Replications	Discussion O	Appendix •

- Numerator:
 - Probability true positive: 1β .
 - Probability no-one declares true positive: $[1 (1 \beta)]^k = \beta^k$.
 - Probability at least one declares true positive: $1 \beta^k$.
- Denominator:
 - Probability false positive: α .
 - Probability no-one declares false positive: $(1 \alpha)^k$.
 - Probability at least on declares false positive: $1 (1 \alpha)^k$.

$$\mathtt{PSP}^{\mathtt{comp}} = \frac{\left(1 - \beta^k\right) \pi}{\left(1 - \beta^k\right) \pi + \left[1 - (1 - \alpha)^k\right] \ \left(1 - \pi\right)}$$

